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FIG. 9. P-V-T surface for a normal polymorphic transition. 
.c.S< 0, .c. V < 0, dP/dT> O. O'Q'R'S', etc., are isotherms; OK 
and EQ'FG are isentropes. OQ'HJis an R-H curve centered 
at O. 

conform to the rule that on an isotherm the high-pres­
sure phase has the lesser volume, and on an isobar the 
high-temperature phase has the greater entropy. 

In Fig. 9, where dP /dT> 0, ABCD is the mixed phase 
region; OQRS,O'Q'R'S',O"Q"R"S" are isotherms that 
start in phase 1 at P = 0, cross the mixed phase region 
at constant pressure, and rise again in phase 2. EQ'FG 
is an isentrope which experiences a break in slope at 
boundaries of the mixed phase region; OQ'HJ is the 
R-H curve centered at ° and recentered at Q'. It has a 
second-order contact with the isentrope OK at 0; it in­
tersects the phase boundary at Q', starts again with a 
second-order contact with EQ' F at Q', continues on to 
intersect the second phase boundary atH, and turns 
sharply up in phase 2. Relative positions of phase 
boundaries, isotherm, isentropes, and R-H curve in 
the P-V plane are indicated in Fig. 10. 

The discontinuity in slope of isentropes at the mixed 
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FIG. 10. Configuration of isentropes, isotherm, and R-H 
curves in the pressure-volume plane for a solid shock loaded 
through a normal polymorphic phase transition. Equation of 
state surface as in Fig. 9. 
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FIG. 11. Equation of state surface for .c. V < 0, .c.s > 0, dP / dT 
< O. 

phase boundary is given by (Duvall and Horie, 1965) 

(av / ap)Sl - (av / ap)SM = (T/ Cp)(dS/ dP)2 > O. (31) 

Subscript SM refers to the isentropic condition in the 
mixed phase region. All quantities are evaluated at the 
boundary between phase 1 and the mixed phase. The 
sign of the inequality in Eq. (31) insures that the isen­
trope in phase 1 is always steeper than that in the mixed 
phase. This implies that Inequality (28) is satisfied for 
some Po, Va andp!2), V2 ; i.e., under some conditions a 
double shock-wave structure will result from the cusp 
atA in Fig. 10. An analogous argument shows that the 
discontinuity in slope at B cannot produce a double 
wave. These statements apply only for .c.V < O. 

S.ome anomalous transitions exist for which .c.V < 0 
t.S>0, dP / dT<O. The equation of state surface for ~uch 
cases is illustrated in Fig. 11. For this case, dS/ dT< 0 
on the phase boundary, so temperature decreases on the 
isentrope through the mixed phase region, as shown. 
Projections in the P-V plane are shown in Fig. 12. In­
equality (31) is independent of the sign of dP / dT, so in 
this case, too, a double wave structure is possible. 

There are discontinuities in slope of the R-H curve in 
the Us -Up plane which correspond to those illustrated 
in Figs. 9-12. Differentiation of Eqs. (9) and (10) yields 
the relation 

TID' = (R -1)/ (R +1), 

where 

w=1 - V / Va , 

R ;; (dP / dTl )/ [ (P - P 0)/ 11], 

D';;d(U. - Ua) / d(Up - Ua). 

(32) 

R is the ratio of slope of the R-H curve at a point (P, V) 
to the slope of the chord drawn from (Po, Va) to (p, V). 
For a single shock from (Po, Va) to (p, V), R > 1 and 
d(U&-Ua) / d(Up-Ua»O, since 11>0. If the R-H curve 
crosses a phase boundary at P A, V A and a single shock 
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FIG. 12. Configuration of isentropes , isotherms, and R-H 
curves in the pressure-volume plane for Ll. V< 0, Ll.S> 0, dP/dT 
< O. 

remains stable, (p -P o)/Tj is unchanged, but dP / dTj has 
a discontinuity which produces a discontinuity Ll.R in R . 
The corresponding discontinuity in D 1 is 

Ll.D' =2AR/(Tj(R +1)(R +1 +AR)]. 

AR can be negative; if it is less than 1 -R, a single 
shock is unstable. 

(33) 

If the change in R-H curve slope at the phase boundary 
is great enough to produce a second shock, two cases 
must be distinguished: (1) the second shock is perceived 
as a second shock and data reduction proceeds accord­
ingly; (2) the compression is still perceived as a single 
shock. 

In the first case, if intersection with the phase bound­
ary is at (P A, V A), Eqs. (9) and (10) still apply with Po, 
Yo, Uo replaced by P A, V A, and U A' Then Eq. (32) is re­
placed by 

(34) 

where 

_ V _ VA-V ~ 
TjA - 1 - V A - V 0 - V V A Tj, 

(dP I dTjA) 
R A = I (P -P A) TjA ' 

D~ = d(u~2) -uA)l d(U!2) - U A), 

uF ) = propagation velocity of second shock, 

uf ) = particle velocity behind the second shock. 

A t the intersection, P =P A' V = V A, TjA = 0 and Eq. (34) is 
indeterminate. LetP -P A =C1TjA +C2Tj~ + •••. Then Eq. 
(30) gives 

D~ =C2/ 2C1 . (35) 

The change in s lope in the Us - U, plane is 

, 1_ C2 dP l dTj -[(PA-PO)/(Vo-VA)]VA 
DA-D - 2C1 - dP l dTj+[(PA-PO)/(Vo-VA)]V A 

(36) 

In the second case, which describes the "flash gap" 
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experiments commonly used at the Los Alamos Scientif­
ic Laboratories (McQueen et al., 1970), Us does not 
change but Up does since Us is inferred from the time 
of first shock arrival. In that case D'=O over the span 
of Up from initial formation of the second shock until it 
overruns the first shock. This produces an uncertainty 
in the transition point which is noted in the literature 
(McQueen et al., 1967). 

Shock pressures measured in the mixed phase region 
are normally found to be greater than values calculated 
thermodynamically. Slope of the R-H curve in the 
mixed phase region at the boundary of phase 1 is given 
by the equation (Duff and Minshall, 1957), 

dV I - dT _ S!. (dT)2 
dP --~lVA+2alVAdP T dP ' 

R-H A 

(37) 

where f3 1 , au CP1 are isothermal compressibility, therm­
al expansivity, and specific heat at constant pressure, 
respectively, in phase 1, all evaluated at the transition 
point V A' T A, P A; dP I dT is slope of the phase line. Mea­
sured values of I dP I dVI are observed to be much great­
er than values calculated from Eq. (37) for iron and 
quartz (Duvall and Horie, 1965) and for KCl (Hayes, 
1974). The difference is smaller for bismuth and may 
conform to the equilibrium value (Duff and Minshall, 
1957; Duvall and Horie, 1965) . Hayes (1972) and Pod­
urets and Trunin (1974) have discussed possible causes 
for these differences. Both Hayes and Podurets and 
Trunin suggest surface energy as a cause for larger 
values of dP I dV, but means for establishing the validity 
of this proposal do not presently exist. 

It is important to note that even though double wave 
structures are possible, they will not necessarily be 
found in a given experiment. Final pressure may be too 
high for the double shock to be stable, or initial pres­
sure may be too low. The former case is illustrated in 
iron for final shock pressure greater than 33.0 GPa 
(Zukas and Fowler, 1961)/ the latter in CC14 and liquid 
N2 (Dick, 1970). Further discussion of shock waves and 
the geometry of phase transitions described in this sec­
tion can be found in McQueen et al. (1970). 

E. Effects of shear stress on phase transitions 

According to Eq. (3) the stress component p" in a 
shock wave is composed of mean pressure and a shear 
stress. No account of shear stress was included in the 
preceding section, and it is reasonable to suppose that 
it may complicate· comparisons of shock-induced and 
static transformation parameters . . In ductile solids T 

is limited by the yielding process; it may be very small 
in soft metals like pure aluminum; in brittle materials, 
like sapphire, it may amount to several tens of GPa. The 
value of p" at which elastic failure occurs in a shock wave 
is often called the "Hugoniot Elastic Limit," abbrevi­
ated HEL. When the HEL is large, T may be large at 
the transition point, and the role of shear stress in 
transitions intrudes on the Simplicity of hydrostatiCS. 
Unfortunately, it is not easy to account for the effects 
of shear. 

3See also Fig. 18, this paper . 


